Make, Getting Started with Sensors, Measure the World with Electronics, Arduino and Raspberry Pi by Kimmo Karvinen and Tero Karvinen.
Preface
There is a world of things happening around you, most of which become knowable to you thanks to one or more of your five senses. Sensory perception happens so quickly, and so often, that it’s easy to overlook how impressive a system you actually are.
Take a moment and think how many sensory events happened to you from the time you woke up to the time you began reading this book. It’s likely that you can’t even list all the sensory occurrences. Not only do you constantly sense the environment, but your senses also work together to compile a picture of the universe. For example, events such as people passing by, warm sun shining on your face, or observing that a cool breeze in the morning is getting warmer in the afternoon are all fine examples of your senses at work and your mind processing sensations. But how can a robot or gadget have similar input? You probably already know what makes this possible (you did buy a book on the topic): sensors.
Adding sensors to a circuit expands its capabilities just as your own senses expand your awareness and inform you about the world. Sensors provide an input for information about an environment and work much like your own senses. But sensation isn’t the only issue with sensors. A component doesn’t necessarily have the ability to draw conclusions when a particular event occurs. Say, for instance, that it is –5 degrees outside and you want to go for a walk; what should you wear? You know, of course, that a coat and winter clothing are in order, but a temperature sensor does not know this. It can certainly provide you with a temperature reading, but it does not make judgments or inferences about what you should wear—at least not at the component level. For sensors to matter in the same way that your own sensations and your reflection on these sensations matter, a level of data processing needs to occur on the sensor data. Ultimately, sensors are components that you wire so that, either through hardware or software, their data is processed —and that’s what this book is about: how to wire sensors and process their data.
In the first part of this book, you’ll learn how to wire up sensors to other components. The level of data processing isn’t too robust at the component level, and the focus is really on just getting a sensor safely wired and teaching some of the basics. The second part of the book deals with how to process sensor data. You will learn how to easily and quickly write programs with Arduino to process sensor data, as well as how to wire and program a Raspberry Pi to support analog sensors.
In this book, you’ll gain hands-on experience with some of the most useful and instructive sensors available. Among the sensors and applications in this book, you’ll learn how to detect and respond to:
• Clicks and rotation with a potentiometer
• Distance with ultrasound
• Proximity with infrared sensors
• Light and dark with a photoresistor
• Temperature with a thermometer
• Relative humidity with a capacitive relative humidity sensor
Book Details:
There is a world of things happening around you, most of which become knowable to you thanks to one or more of your five senses. Sensory perception happens so quickly, and so often, that it’s easy to overlook how impressive a system you actually are.
Take a moment and think how many sensory events happened to you from the time you woke up to the time you began reading this book. It’s likely that you can’t even list all the sensory occurrences. Not only do you constantly sense the environment, but your senses also work together to compile a picture of the universe. For example, events such as people passing by, warm sun shining on your face, or observing that a cool breeze in the morning is getting warmer in the afternoon are all fine examples of your senses at work and your mind processing sensations. But how can a robot or gadget have similar input? You probably already know what makes this possible (you did buy a book on the topic): sensors.
Adding sensors to a circuit expands its capabilities just as your own senses expand your awareness and inform you about the world. Sensors provide an input for information about an environment and work much like your own senses. But sensation isn’t the only issue with sensors. A component doesn’t necessarily have the ability to draw conclusions when a particular event occurs. Say, for instance, that it is –5 degrees outside and you want to go for a walk; what should you wear? You know, of course, that a coat and winter clothing are in order, but a temperature sensor does not know this. It can certainly provide you with a temperature reading, but it does not make judgments or inferences about what you should wear—at least not at the component level. For sensors to matter in the same way that your own sensations and your reflection on these sensations matter, a level of data processing needs to occur on the sensor data. Ultimately, sensors are components that you wire so that, either through hardware or software, their data is processed —and that’s what this book is about: how to wire sensors and process their data.
In the first part of this book, you’ll learn how to wire up sensors to other components. The level of data processing isn’t too robust at the component level, and the focus is really on just getting a sensor safely wired and teaching some of the basics. The second part of the book deals with how to process sensor data. You will learn how to easily and quickly write programs with Arduino to process sensor data, as well as how to wire and program a Raspberry Pi to support analog sensors.
In this book, you’ll gain hands-on experience with some of the most useful and instructive sensors available. Among the sensors and applications in this book, you’ll learn how to detect and respond to:
• Clicks and rotation with a potentiometer
• Distance with ultrasound
• Proximity with infrared sensors
• Light and dark with a photoresistor
• Temperature with a thermometer
• Relative humidity with a capacitive relative humidity sensor
Book Details:
Format: PDF
Language: English
Pages: 140
Size: 6.6 MiB
Download Make, Getting Started with Sensors, Measure the World with Electronics, Arduino and Raspberry Pi by Kimmo Karvinen and Tero Karvinen free pdf format.