# Working Guide to Pump and Pumping Stations: Calculations and Simulations pdf free download

Working Guide to Pump and Pumping Stations: Calculations and Simulations by E. Shashi Menon and Pramila S. Menon pdf.

Working Guide to Pump and Pumping Stations: Calculations and Simulations by E. Shashi Menon and Pramila S. Menon free pdf download.

Preface of Working Guide to Pump and Pumping Stations: Calculations and Simulations book:
This book is about the application of pumps and pumping stations used in pipelines transporting liquids. It is designed to be a working guide for engineers and technicians dealing with centrifugal pumps in the water, petroleum, oil, chemical, and process industries. The reader will be introduced to the basic theory of pumps and how pumps are applied to practical situations using examples of simulations, without extensive mathematical analysis. In most cases, the theory is explained and followed by solved example problems in both U.S. Customary System (English) and SI (metric) units. Additional practice problems are provided in each chapter as further exercise.

The book consists of nine chapters and nine appendices. The first chapter introduces the reader to the various types of pumps used in the industry, the properties of liquids, performance curves, and the Bernoulli’s equation. The next chapter discusses the performance of centrifugal pumps in more detail, including variation with impeller speed and diameter. The concept of specific speed is introduced and power calculations explained. Chapter 3 reviews the effect of liquid specific gravity and viscosity on pump performance and how the Hydraulic Institute Method can be used to correct the pump performance for high viscosity liquids. The temperature rise of a liquid when it is pumped and pump operation with the discharge valve closed are discussed. Chapter 4 introduces the various methods of calculating pressure loss due to friction in piping systems. The Darcy equation, friction factor, the Moody diagram, and the use of the two popular equations for pressure drop (Hazen-Williams and Colebrook-White) are reviewed, and several examples illustrating the method of calculation are solved. Minor losses in valves and fittings, and equivalent lengths of pipes in series and parallel, are explained using example problems. Chapter 5 introduces pipe system head curves and their development, as well as how they are used with the pump head curves to define the operating point for a specific pump and pipeline combination. Chapter 6 explains Affinity Laws for centrifugal pumps and how the pump performance is affected by variation in pump impeller diameter or speed. The method of determining the impeller size or speed required to achieve a specific operating point is explained using examples.

Chapter 7 introduces the concept of net positive suction head (NPSH) and its importance in preventing cavitation in centrifugal pumps. Using examples, the method of calculating the NPSH available in a piping system versus the NPSH required for a specific pump is illustrated. Chapter 8 covers several applications and economics of centrifugal pumps and pipeline systems. Pumps in series and parallel configuration as well as several case studies for increasing pipeline throughput using additional pumps and pipe loops are discussed. Economic analysis, considering the capital cost, operating and maintenance costs, and rate of return on investment for the most cost effective option are discussed. Finally, Chapter 9 reviews pump simulation using the popular commercial software package PUMPCALC (www.systek.us).

The appendices consist of nine sections and include a list of all formulas presented in the various chapters, unit and conversion factors, the properties of water and other common liquids, the properties of circular pipes, a table of head loss in water pipes, the Darcy friction factor, and the least squares method (LSM) for fitting pump curve data.